
Smoothing the Silhouettes of Polyhedral Meshes

by Boundary Curve Interpolation

Department of Computer Science and Information Systems,
Faculty of Engineering,

The University of Hong Kong,
Pokfulam Road,

Hong Kong.

Submitted for the degree of Master of Philosophy
at the University of Hong Kong in August, 1999

Supervisor:
Dr. Wenping Wang

Wu Sing On
31st August, 1999

 2

Acknowledgement
I want to thank my supervisor Dr. Wenping Wang, who gave me the opportunity to
study as a research student and finish this work. He has been giving me invaluable
guidance since I was an undergraduate student. His advice on this work is crucial and
many of the ideas are indeed owed much to him.

I would also like to thank C. H. Poon, who is also a research student of Dr.
Wang. He stayed in the Graphics Lab late at night like I did and made me feel better
when I encountered some obscure programming bugs and was crazy debugging since
I had someone to talk to at least. His suggestions are quite useful also. I also want to
thank K. H. Yeung, who is another student of Dr. Wang. We had discussed briefly on
some implementation stuff and he gave some useful ideas.

Although I do not know him personally, I also want to thank Mr. Brian Paul
for his excellent work on writing Mesa and making its source code publicly available,
so that I can have something to base on instead of writing all the code from scratch. It
is really incredible to be able to implement such a 3D graphics library.

I am also grateful to Gracelyn Chan, who virtually took care of my everyday
life in those days when I did not know whether it was day or night, and whether I
should take breakfast or dinner, but just knew I had to write, write and write.

 5

1. Introduction

Efficient and accurate rendering of smooth curved surfaces1 is a fundamental problem

in computer graphics. It is because much of computer graphics is concerned with

modeling the real world, and many real-world objects are inherently smooth on a

certain scale [FOLE90]. For interactive computer graphics applications nowadays

such as multimedia, computer animation, virtual reality, computer games, and so on,

we not only want to render smooth surfaces such that they look like their real

counterparts as much as possible, but we also want to do it as fast as possible.

To render a smooth surface for the purpose of interactive display, it is now

almost a standard practice to first obtain a polyhedral mesh, which is a set of

polygons, typically triangles, as an approximate representation of the curved surface,

and then pass the vertex data including the vertex coordinates, normal vectors, color

values, etc., to the graphics sub-system, which is then responsible for rendering the

mesh as a 2D image. The reason for using polyhedral approximations for curved

surfaces is that commercial graphics hardware, which is dedicated to rendering

smoothly shaded polygons efficiently, is now commonly available. This kind of

hardware is virtually a hardware implementation of the standard scan-line algorithm2

integrated with Gouraud shading [GOUR71], together with texture mapping and more

recently, even bump mapping. Workstations or personal computers equipped with

such graphics hardware can render smoothly shaded polygons at a very high speed.

This is arguably the primary reason for the computer graphics community to represent

every 3D objects they want to render by polygons, or a polyhedral mesh. Even

though people do not have access to graphics hardware, they would still like to use

polygons and the scan-line algorithm implemented in software since the algorithm

itself is fast and simple. Though techniques for rendering curves surfaces other than

using polyhedral approximations and the scan-line algorithm do exist, no one seems

to bother to use them for interactive computer graphics applications, probably due to

their inherent complexity and inefficiency. It is almost certain that polyhedral meshes

will continue to be used for representing smooth curved surfaces in computer

graphics.

1 We will use the terms smooth curved surface, smooth surface and curved surface interchangeably.
2 [FOLE90] gives a detailed account and references for the scan-line algorithm and the various
versions of it.

 6

However, using polyhedral meshes to represent curves surfaces for rendering

is not without its problems. A polyhedral mesh rendered may not look as faithful to

the curved surface it represents as one might expect. One important criterion for the

mesh to look ‘realistic’ is the smoothness of its shading. A curved surface should

have a continuous, smooth shading. Simply shading the polygons individually as

they are obviously does not work, since it gives a faceted appearance instead of a

smooth one. Fortunately, much effort was devoted to smoothly shading a polyhedral

mesh to simulate a smooth surface, while still using the fast and simple scan-line

algorithm. This is the well-known Gouraud shading [GOUR71] and Phong [BUIT75]

shading methods. These methods give a smoothly shaded appearance to a polyhedral

mesh so that it looks like a curved surface in terms of shading, though they both

suffer more or less from the well-known Mach band effect3, especially Gouraud

shading. Phong shading in general is superior in quality to Gouraud shading, but at

the same time computationally more expensive. This is probably the reason why only

Gouraud shading is commonly available in commercial graphics hardware.

Another important criterion for a rendered polyhedral mesh to look like a

curved surface is the smoothness of its silhouette. It is a well-known problem that no

matter how realistic the shading of a polyhedral mesh is, the mesh exhibits a

conspicuously polygonal silhouette. Let us quote a sentence from page 739 of

[FOLE90]:

“No matter how good an approximation an interpolated shading

model offers to the actual shading of a curved surface, the silhouette

edge of the mesh is still clearly polygonal.”

[VANO97a] and [VANO97b] also have comments on the silhouette problem of

polyhedral models:

“...using the interpolated normal vectors in the shading computations,

yields a smoothly varying intensity distribution. There is an inherent

mismatch, however, between the smoothness of the shading thus

achieved and the non-smoothness of the geometry which is

3 Again [FOLE90] gives an account and reference for the Mach band effect.

 7

particularly visible at silhouettes, showing as straight edges and non-

smooth edge junctions at the silhouette vertices.”

“Images that are generated by means of the traditional Phong shading

algorithm typically look very good provided the polygonal mesh is

sufficiently dense. For larger polygons, several conspicuous artifacts

may arise. The silhouette edge problem is probably the most

notorious one, ...”

Although the problem is well-known in the computer graphics community, it

seems that little has been done to tackle the problem directly. The most obvious and

most applied technique so far is to approximate a curved surface with a huge number

of tiny polygons so as to produce a smooth silhouette. Using this method, if we want

to have a silhouette guaranteed smooth, we virtually have to ensure that each polygon

is smaller in size than a pixel on the computer screen. For an object which occupies a

significant portion of the screen, we obviously need a really large number of

polygons. This will increase the expense of rendering such an object both in terms of

storage and computation. The latter is especially undesirable since the rendering time

would become too long for interactive display. One more thing to note about the

method of using more polygons is that shading is also improved.

Our work is concerned with tackling the problem of silhouette directly, while

leaving shading alone. We have devised an algorithm which tries to solve the

problem without increasing the number of polygons to render, thereby avoiding

increasing the rendering time by a large extent.

We will first have a brief review of some related work (2. Related Work),

followed by an account of the background and inspiration which lead us to the work

presented here (3. Background and Inspiration). Then we will give an overview of

the essential steps of our algorithm (4. Overview of the Algorithm), after which we

will have detailed descriptions and explanations of the various steps of our algorithm

(5. Identification of Silhouette Polygons, 6. Perturbation of Silhouette Vertices,

and 7. Scan-Conversion of Silhouette Polygons), which form the major part of this

writing. What follows is a discussion on issues related to the implementation of our

algorithm (8. Implementation Issues). After this, we will try to examine the quality

 8

(9. Quality) and performance (10. Performance) of the algorithm. The final part

contains some suggestions on the future directions of this work (11. Future Work)

and a conclusion (12. Conclusion).

2. Related Work

Besides the rather straightforward approach of using a large number of polygons to

approximate a curved surface so as to obtain a smooth silhouette, there is some earlier

work on scan-converting curved surfaces directly. Even if the method of using many

polygons is to be used, problems arise from how to subdivide the original polyhedral

mesh into more polygons if the underlying curved surface is unknown.

2.1 Direct Scan-Conversion of Curved Surfaces

Three scan-line methods for displaying parametrically defined surfaces are presented

in [LANE80]. Parametrically defined surfaces are those defined by the function

x(u, v) = (x(u, v), y(u, v), z(u, v)). Scan-line algorithms can readily be applied to

polygons because edges can be tracked as functions of y. Parametrically defined

surfaces do not have this property. Unlike polygons, edges not only occur on the

boundary, but also on the silhouette. (For polygonal objects any silhouette edge is

also a boundary edge.) Two of the authors, Blinn and Whitted track edges by finding

all the intersections of a scan line with the boundary and silhouette edges of a surface

patch, so as to do scan-conversion. This inevitably involves the use of numerical

root-finding methods like Newton-Raphson iteration, which is used by the authors.

Efficiency cannot be expected from this kind of numerical iteration method and

sometimes the roots cannot be found for some special cases. Whitted’s algorithm

cannot handle certain silhouette edges properly. Nevertheless, most models of real

objects are well-behaved and their algorithms do a good job of rendering them,

regardless of efficiency. As they deal with the parametric representations of surfaces

directly, polygonal artifacts cannot appear and the silhouette is guaranteed smooth.

The other two authors, Lane and Carpenter perform an adaptive subdivision of

each surface patch until each patch is within a set tolerance of being a planar

quadrilateral, which can then be scan-converted with an ordinary polygon scan-

conversion algorithm. The tolerance normally depends on the resolution of the

computer screen so unnecessary subdivisions are avoided. If the tolerance is set

 9

appropriately, this algorithm also produces good looking images of curved surfaces

with smooth silhouettes.

Although this kind of algorithm shares more or less the same goal as we do,

they expect a mathematically well-defined surface as input, whereas we would like to

accept a polyhedral mesh as input and render it so that it looks like a curved surface.

Also, their use of numerical root-finding methods may pose significant efficiency

problems for the purpose of interactive display.

2.2 Polygon Subdivision of Polyhedral Meshes

A method of subdividing an existing polyhedral mesh into one with more polygons is

presented in [VANO97a]. This essentially can be considered as a reverse process of

mesh simplification. This method makes a minimal assumption on the input

polyhedral mesh: the input data comprises vertex coordinates and vertex normal

vectors, and nothing else. In particular, the algorithm does not require any

neighborhood information, in contrast to other subdivision algorithms and those mesh

simplification algorithms. For each polygon, the authors use the vertex coordinates

and normal vectors to construct a 4th-degree triangular Bezier surface patch, which

essentially replaces the polygon. This patch can easily be subdivided into several

smaller polygons, with some new normal vectors which come smoothly between the

original ones as they are obtained from the Bezier patch. The whole process can be

applied recursively to produce more Bezier surface patches and therefore more

polygons. The algorithm is a preprocessing step prior to rendering: it just produces a

mesh with more polygons for the graphics sub-system to render. If the number of

polygons is sufficiently large, the silhouette of a rendered mesh will be smooth. Also,

as the new polygons and normal vectors are obtained from the original mesh, the new

mesh with more polygons will look faithful to the original one.

 10

3. Background and Inspiration

As mentioned earlier, rendered images of polyhedral meshes do not look faithful to

the curves surfaces the meshes are supposed to represent mainly because of two

factors: non-smoothness of shading (the Mach band effect, in particular) and

polygonal silhouettes. The most common way to improve the appearance of

polyhedral meshes so that they look more like curve surfaces is to use more polygons.

This way virtually improves the quality of both shading and silhouette, and if we want

to guarantee the silhouette to be smooth, we must ensure that each polygon is smaller

than a pixel.

Our work is mainly inspired by the observation that when we keep increasing

the number of polygons of a polyhedral mesh so as to improve its resemblance to a

curved surface, after the polygons has become sufficiently numerous, we are just

improving the smoothness of the silhouette, without much apparent improvement in

shading. Empirically speaking, shading has been quite good already with fewer

polygons (see Figure 1). This observation naturally leads to the idea that increasing

the number of polygons just to improve the silhouette is somewhat overkill. We

would like to tackle the problem of polygonal silhouettes independent of shading, and

independent of the number of polygons a polyhedral mesh has. That means no matter

how good or how bad the quality of shading is, and no matter how many and how few

polygons a polyhedral mesh has, we want to make the silhouette look smooth. The

‘Perfect’ shadingAcceptable shading

Figure 1

 11

number of polygons certainly still matters in terms of shading, for if we have to

restrict ourselves to either Gouraud shading or Phong shading or whatever other

interpolated shading, the only way for us to improve the smoothness of shading is to

use more polygons. Our work also implies that the silhouette and shading are

improved separately from each other, unlike what is commonly being done now.

How to improve the quality of shading is probably another important topic, but we

would like to leave it alone for the time being. We would like to concentrate on the

silhouette: render the silhouette such that it appears as a smooth, closed curve rather

than a polygon. Our algorithm achieves this by interpolating the vertices on the

silhouette, together with their normal vectors, which must be provided for shading

anyway, to obtain a smooth curve (one with G1 continuity).

4. Overview of the Algorithm

The major steps of our method of rendering a polyhedral mesh such that its silhouette

is guaranteed smooth are given below:

1. Identify silhouette polygons

We define a silhouette polygon as a polygon which is visible (front-facing) and

have at least one neighbor which is invisible (back-facing), where a neighbor of a

polygon is defined as another polygon which shares an edge with it. An edge

shared by an invisible neighbor is called a silhouette edge, of which the two

vertices are called silhouette vertices. We must first of all distinguish silhouette

polygons from other ‘interior’ polygons. In this step we also identify silhouette

edges and silhouette vertices, but for convenience we refer generally to this step as

‘identify silhouette polygons’ or ‘identification of silhouette polygons’.

2. Perturb the silhouette vertices

This essentially means that we modify the position of the silhouette vertices in the

3D space, or more specifically, in the eye coordinates using the OpenGL

terminology, if necessary, so that they lie in the real silhouette of the curved

surface that the polyhedral mesh represents. The necessity of this step may seem

hardly comprehensible at first glance and a detailed explanation on this will be

given later.

 12

3. Scan-convert the silhouette polygons in the new way

For each silhouette polygon, we scan-convert it in such a way that its silhouette

edge(s) appear(s) appropriately curved rather than straight. The curve is obtained

by interpolation of the silhouette vertices with their (projected) normal vectors.

The interpolation is done in 2D, or the window coordinates using the OpenGL

terminology. The final result will be that straight silhouette edges are replaced by

curve segments which join together with each other with G1 continuity and the

silhouette of the rendered polyhedral mesh will be a closed, smooth curve rather

than a polygon.

4. Scan-convert the other polygons in the conventional way

For those non-silhouette polygons, we just scan-convert them using the

conventional scan-line algorithm since they have nothing to do with the silhouette.

Obviously this step does not necessarily come before or after the step just

described above. The process of rendering silhouette and that of non-silhouette

polygons can certainly be interleaved with each other.

5. Identification of Silhouette Polygons

In general, polygons which are front-facing but have at least a neighbor which is

back-facing are considered silhouette polygons (see Figure 2). Conceptually, we can

determine whether a polygon is a silhouette polygon or not by just examining the

polygon itself and its neighbors. For example, see Figure 3, where the shaded triangle

is shown with its three neighbors. If ∆V0V1V2 is back-facing, then it is not a silhouette

triangle. Otherwise (i.e., ∆V0V1V2 is front-facing), if, say, ∆V0A0V1 is back-facing,

Figure 2

 13

then ∆V0V1V2 is a silhouette triangle. Moreover, we know that V0V1 is a silhouette

edge and V0, V1 are silhouette vertices.

5.1 Technicality

To summarize the scheme of determining whether a triangle is a silhouette triangle or

not, we want to define something called an auxiliary vertex. A triangle V0V1V2 has an

auxiliary vertex Ai (0 ≤ i ≤ 2) if and only if ∆ViAiV(i+1) mod 2 is a neighbor of ∆V0V1V2.

In Figure 3, A0, A1 and A2 are auxiliary vertices of ∆V0V1V2. Then, given a front-

facing triangle V0V1V2 with auxiliary vertices A0, A1 and A2, if for some i (0 ≤ i ≤ 2)

∆ViAiV(i+1) mod 2 is back-facing, then ∆V0V1V2 is a silhouette triangle, and ViV(i+1) mod 2

is a silhouette edge, and Vi, V(i+1) mod 2 are silhouette vertices. For deciding whether a

triangle is front-facing or not, we use the common method of computing the signed

area of the triangle in window coordinates and checking its sign, as described in

[WOO96]. This scheme can easily be generalized to other polygons.

5.2 Practical Consideration

It is obvious that in order to determine whether a polygon is a silhouette polygon or

not, we must have its neighbors available. This requirement deviates from the

standard practice in computer graphics since the conventional graphics pipeline does

not require any neighborhood information to render polygons, and therefore does not

possess such information. In fact, the graphics sub-system does not have a notion of a

‘mesh’ or an ‘object’ since it treats all polygons independently. It accepts polygons

V0

V1

V2

A0A1

A2

∆ ∆ ∆ ∆V V V with its 3 neighbors: V A V , V A V and V A V0 1 2 0 0 1 1 1 2 2 2 0

Figure 3

 14

one by one and renders them one by one in the order it receives them, without

knowing which is adjacent to which (with the possible exception of the primitive

types triangle strips and quadrilateral strips, which conveys partial neighborhood

information, but for the sole purpose of saving extra computation).

To be able to identify silhouette polygons, we have to provide extra

information, which the graphics sub-system must be able to utilize. For each triangle

to be rendered, as mentioned above, we have to provide at most three more triangles,

which are its neighbors, and we must know which edge of it is shared by which

neighbor. This can easily be done by providing auxiliary vertices as defined earlier.

The graphics sub-system must be modified in a way such that it can accept and

understand such information and use it to identify silhouette triangles (and hence

silhouette edges and vertices). This modification has a number of implications both

C

S

S’

v

n

n’

new
position
of S

r

θ
d

r

{

(a)

(c)

(b)

S

Figure 4

 15

in terms of implementation and performance of our method, which will be discussed

in sections 8 and 10.

6. Perturbation of Silhouette Vertices

As a reasonably accurate model of a curved surface, a polyhedral mesh should have

its vertices sampled from the curved surface itself. That means every vertex of a

polyhedral mesh should also lie in the curved surface the mesh is supposed to

approximate. Although this can be taken for granted in most cases, after viewing

projection, a silhouette vertex of a rendered polyhedral mesh may not be in the real

silhouette of the curved surface.

6.1 Unrepresentative Silhouette Vertices

For simplicity and ease of understanding, we use a sphere as an example to explain

this phenomenon. Imagine that we are viewing a polyhedral mesh which is meant to

represent a sphere (see Figure 4a). For any silhouette vertex of the mesh, there exists

a unique cross-sectional plane that passes through the vertex itself and is spanned by

the normal vector of the vertex and the view vector (a vector pointing from the

viewpoint to the vertex). Figure 4b shows such a polygonal cross-section of the mesh

together with the ‘real’ circular cross-section, which the polygonal one is supposed to

represent. In Figure 4b, S is the same silhouette vertex S of the mesh shown in Figure

4a, and n is its normal vector. We can see that although S is a silhouette vertex of the

polyhedral mesh, it is not a point in the silhouette of the sphere. For a smooth surface

such as a sphere, the silhouette is a curve in the surface such that the normal vector at

any point in the curve has zero z component [LANE80]. S is obviously not such a

point so it is not in the ‘real’ silhouette. Instead, S’ is such a point, since its normal

vector n’ has zero z component. However, S’ is just an ‘imaginary’ point4 since we

are indeed looking at the polyhedral mesh, where there is no such point S’ in reality.

See Figure 4c, where an image of the ‘real’ sphere is superimposed on that of the

mesh, and one will be convinced that S is in fact not in the real silhouette.

4 We just mean that the point does not really exist in the polyhedral mesh. We are not referring to
anything related to complex numbers.

 16

6.2 Unfaithful Static Images

The implication of such a phenomenon is that if we want to have a better illusion that

we are looking at a sphere while actually looking at a smoothly shaded polyhedral

mesh like the one shown in Figure 5a, when we see a point like S, we would actually

like to see S’ in place of it. That is why we have to perturb a silhouette vertex so that

it lies in the real silhouette, i.e., we want to move a point like S to the position of a

corresponding point like S’. The necessity of this step will become most obvious if

one has seen an image produced by our algorithm with this step (Figure 5b) and

(a) (b)

(c) (d)

Figure 5

 17

another image produced by our algorithm without this step (Figure 5c). Figure 5d is

essentially the same as Figure 5c except that a wireframe of the mesh (not perturbed)

is also shown. The object shown in Figure 5c looks like a sphere which is somehow

‘pressed’ inwards at several places but the one in Figure 5b looks very much like a

normal sphere. Recalling Figure 4b, an unrepresentative silhouette vertex like S is

closer to the center C of the sphere than a real silhouette point S’ does. That is why

the object in Figure 5c looks like a ‘shrunken’ sphere rather than a normal one.

6.3 Lack of Frame-to-Frame Coherence during Animation

In spite of those unrepresentative silhouette vertices, one may be satisfied with an

image like Figure 5c: both its silhouette and shading are smooth, and if the viewer

does not expect to see a sphere, the image may look perfectly acceptable to him since

the object looks like a smooth surface anyway. This may be the case for static scenes,

but if the object is meant to be animated, one can hardly accept those unrepresentative

silhouette vertices. Translation of the object will not be a problem, but if the object is

rotated, we will observe some lack of frame-to-frame coherence. See Figure 6, which

shows the same mesh as in Figure 5c but with different orientations. For some

orientations (Figure 6a) the silhouette vertices of the mesh happen to be in the real

silhouette, and the mesh looks much like a sphere. However, for some other

orientations (Figure 6b), it is not the case, and the ‘sphere’ seems shrunken. If the

mesh is continuously being rotated, it will keep changing from one orientation to

another, sometimes appearing like a normal sphere, and sometimes appearing like a

shrunken sphere. The object will then seem to keep shrinking and enlarging, which is

certainly unacceptable.

 18

Recall that our work is concerned with interactive computer applications. In

such applications, 3D objects will animate according to user input. Therefore we

must cater for the need of animation and perturbation of silhouette vertices is an

absolute necessity.

6.4 Perturbing Silhouette Vertices for a Sphere

We can get some clues from Figure 4b to how to move the unrepresentative silhouette

vertices so that they lie in the real silhouette. The vertex S is too close to the center of

the sphere C so we want to move S and other similar vertices a bit away from C so

(a)

(b)

Figure 6

 19

that the object will not have a shrunken appearance. It would be good to move S to

the position of S’ in 3D space but it is not necessary to really do so since what a

viewer will see is just a 2D image. As long as S will be projected on the projection

plane to the same point as S’ would have been, the image will look as if S were at the

position of S’ in 3D.

6.4.1 Technicality

For simplicity, we assume the viewer is at infinity, i.e., the projection is an

orthographic projection and therefore all points are projected in the same direction,

one which is normal to the projection plane. The vector v in Figure 4b is the view

vector, which is just the reverse of the direction of projection. Under such projection,

if S is to be projected to the same point as S’ would have been, it is sufficient to move

S away from C along the direction of n by a certain distance d as shown in Figure 4b,

where r is the radius of the sphere and θ is the angle between the v and n. Using

simple trigonometry, we know that

sin θ =
+
r

r d
.

By rearranging we get

The new position of S is then equal to S + dn, provided that n is a unit vector. If S

happens to be in the real silhouette, then θ = 90° and d = 0, and therefore S is not

perturbed.

6.4.2 Practical Consideration

There are of course more than one way to move S such that it is projected to the same

point on the projection plane. We believe that the way described above is the most

convenient and fast way to do so basing on two assumptions. First, we assume that r

in Equation 6.1 can be computed easily, as described in 6.5 and 8.2. Second, we

assume orthographic projections so sinθ in Equation 6.1 is just equal to the magnitude

of the cross product n×v. Finally we use a scalar-to-vector multiplication and a

vector addition to get S + dn, the new position of S.

d r= −⎛
⎝⎜

⎞
⎠⎟

1
1

sin θ

Equation 6.1

 20

6.5 Perturbing Silhouette Vertices for a General Smooth Curved Surface

So far we have just been discussing only the case of a sphere but not for other

surfaces in general. As the case of a sphere is simple and intuitive, we use it as an

approximation for other curved surface also.

Given any polyhedral mesh, for each silhouette vertex S, we must be able to

form a polygonal cross-section like the one shown in Figure 4b, except that the cross-

section may not represent a circle, but some other curve. We assume that this cross-

sectional curve is locally a circular arc in the vicinity of S. We further assume that

the corresponding real silhouette point S’ is close enough to S such that S’ is also

(approximately) a point of the circular arc just mention. Basing on these assumptions,

we can then perturb S as if it were a point of a sphere, provided that the radius r of

this circular arc can be found.

6.5.1 Techniques from Differential Geometry

To find the radius r, we have to make use of techniques in differential geometry5. In

differential geometry, the cross-sectional curve described above is called a normal

section of the underlying surface. Let us denote this normal section as σ (see Figure

7). Then r is the radius of curvature of the surface at S in the direction u, which is a

tangent vector to the surface at S and parallel to σ. The reciprocal of r is the normal

5 For a detailed account of differential geometry, see any book like [ONEI66].

σ

S u

n

M

P

M
P

- underlying curved surface
- plane containing σ, and u n

Figure 7

 21

curvature k at S in the u direction. If we know the exact mathematical description of

the underlying curved surface, we can compute the two principal curvatures k1 and

k2, and the corresponding principal directions e1 and e2 for each vertex S of the

polyhedral mesh. (Recall that every vertex of the mesh should also lie in the curved

surface). We can then compute k using Euler’s formula: k = k1cos2η + k2sin2η, where

η is the angle between u and e1. If we have found k, we have found r.

6.5.2 Finding the Angle η for Euler’s Formula

Finding the angle η is not a trivial task and is worth some detailed explanation. As

described in 6.1 and shown in Figure 7, the vector u is in the plane P, which is

defined by the view vector v and the normal vector n of S. For orthographic

projections, both v and u are collinear with the negative z-axis (in eye coordinates).

Any vector perpendicular to P is also perpendicular to both v and u, and therefore is

also perpendicular to the negative z-axis. That means such a vector must have zero z

component. Let u’ be a unit vector perpendicular to P such that it is also a tangent

vector to the underlying surface at S. The vector u’ has zero z component so it can be

written as (x, y, 0). Also, u, u’, e1 and e2 are all in the same plane, i.e., the tangent

plane at S. We can express u’ as a linear combination of e1 and e2 as ae1 + be2 for

some real numbers a and b. That means

′ = = +u e e(, ,)x y a b0 1 2

Equation 6.2

If we let e1 = (x1, y1, z1) and e2 = (x2, y2, z2), from Equation 6.2, we get

(, ,) (, ,) (, ,)x y a x y z b x y z az bz0 01 1 1 2 2 2 1 2= + ⇒ + =

That means

b
az
z

= − 1

2

Equation 6.3

 22

From Equation 6.2 and Equation 6.3, u’ can be written as

′ = + = − = − −u e e e ea b a
az
z

a x
z
z

x y
z
z

y1 2 1
1

2
2 1

1

2
2 1

1

2
2 0(, ,)

Equation 6.4

Since u’ is a unit vector,

a

x
z
z

x y
z
z

y

=

−
⎛
⎝
⎜

⎞
⎠
⎟ + −

⎛
⎝
⎜

⎞
⎠
⎟

1

1
1

2
2

2

1
1

2
2

2

Equation 6.5

Let φ be the angle between e1 and u’. Then from Equation 6.4 cosφ is given by

cosφ = −
⎛
⎝
⎜

⎞
⎠
⎟ + −

⎛
⎝
⎜

⎞
⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥a x x

z
z

x y y
z
z

y1 1
1

2
2 1 1

1

2
2

Equation 6.6

Since u’ is perpendicular to u, φ and η are complementary and

cos sin() sinφ φ η= °− =90

Equation 6.7

Then, by using Equation 6.5, Equation 6.6 and Equation 6.7, we can evaluate Euler’s

formula as

k k k
k k
k k k
k k k

= +

= − +

= + −

= + −

1
2

2
2

1
2

2
2

1 2 1
2

1 2 1
2

1
cos sin
(sin) sin

()sin
() cos

η η

η η

η

φ

Equation 6.8

Note that it is not necessary to find η explicitly to evaluate Euler’s formula.

6.5.3 Practical Consideration

Since we have to do the computation described in 6.5.2 for each silhouette vertex to

perturb, we must be aware of its efficiency. In practice, we have to evaluate a total of

four equations: Equation 6.5, Equation 6.6, Equation 6.7 and Equation 6.8. By

looking at Equation 6.5 and Equation 6.6, we know that all the ‘source’ values we

need to evaluate the equations are just the coordinates of the two principal vectors e1

 23

and e2, which are given as input. Also, since all four equations involves only simple

arithmetic operations (Note the square root in Equation 6.5 is not necessary as a is

squared eventually.), the computation involved should be quite efficient.

6.6 The Need for Estimation of Curvatures

Unfortunately, we usually only have a polyhedral mesh in hand but not any

mathematical description of the underlying curved surface. In this case we have no

way to compute the curvatures directly, and have to estimate the principal curvatures

and principal directions of the underlying surface using the geometric information

provided by the polyhedral mesh. We use the well-known method of least square

surface fitting to fit a second order surface to each vertex so that the surface

approximately passes through the vertex and all its adjacent vertices, and then

computing the principal curvatures and principal directions basing on the surface thus

obtained, as described in [KRES98].

6.6.1 Fitting a Surface to Each Vertex

A second order surface used in our curvature estimation scheme is described by the

equation

z g x y ax bxy cy dx ey f= = + + + + +(,) 2 2 .

Equation 6.9

It is the graph of a bivariate function of x and y. This kind of surface is also called a

Monge patch, as it is in the form x(u, v) = (u, v, g(u, v)) [ONEI66]. The trick to use

so that we can use such a simple form for every vertex is to transform the vertex and

all of its neighborhood points (i.e., those connected to the vertex by one edge) into a

coordinate system with origin at the vertex itself and the positive z-axis along its

normal vector. As we are fitting a surface to the vertex, in such a local coordinate

system, the surface described by Equation 6.9 is required to pass through the origin,

i.e., the vertex. That means the constant term f in Equation 6.9 should vanish.

Further, our implementation assumes that the normal vector given for each vertex is a

sufficiently accurate one, which therefore is also the normal vector of the surface at

the origin, so the coefficients of the linear terms d and e should also vanish. The

detailed reason is as follows. The two partial derivatives of the function described in

Equation 6.9 are given by

 24

∂
∂

z
x

g x y ax by dx= = + +(,) 2 and
∂
∂

z
y

g x y bx cy ey= = + +(,) 2 .

The xy-plane is the tangent plane to the surface at the origin, which means that

∂
∂

z
x

g a b d d
x y

x
= =

= = + + = ⇒ =
0 0

0 0 2 0 0 0 0
,

(,) () ()

and

00)0(2)0()0,0(
0,0

=⇒=++==
==

eecbg
y
z

y
yx∂

∂ .

Therefore, Equation 6.9 should reduce to

z g x y ax bxy cy= = + +(,) 2 2 .

Equation 6.10

Now we have to find out the surface, i.e., the coefficients a, b and c in

Equation 6.10. Let us denote each neighborhood point of the vertex as (xi, yi, zi),

where i = 1, 2, 3, …, n (n ≥ 3). By substituting these points into Equation 6.10, we

can set up a system of (probably over-determined) system of linear equations:

x x y y
x x y y

x x y y

a
b
c

z
z

zn n n n n

1
2

1 1 1
2

2
2

2 2 2
2

2 2

1

2

M M

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

.

Equation 6.11

We can then solve for a, b and c by finding the least square solution to this system.

Note that each vertex must have at least 3 neighborhood points for this scheme to

work.

6.6.2 Computing the Curvature Data

To compute the principal curvatures and principal directions for each vertex, we have

to obtain the parameters (E, F, G, L, M, N) of the first and second fundamental form

of the surface [KRES98]. As the surface we use is a Monge patch, which is in the

form x(u, v) = (u, v, f(u, v)), the parameters can be computed easily as follows

[ONEI66]:

 25

where W EG F f fu v= − = + +2 2 2 1 21() / .

Then we can solve the following quadratic equations to obtain the two principal

curvatures and principal directions [KRES98]:

() () ()EG F k EN FM GL k LN M− − − + + − =2 2 22 0

Equation 6.12

() () ()LF ME du LG EN dudv MG NF dv− + − + − =2 2 0 .

Equation 6.13

Equation 6.13 is a bit subtle. Here, the notation du:dv denotes a direction, and is

called a direction number [LIPS69], which represents the vector xudu + xvdv, where

xu and xv are the velocity vectors along the u direction and the v direction

respectively, i.e., xu(u, v) = (1, 0, fu(u, v)) and xv(u, v) = (0, 1, fv(u, v)). As the

direction number is just a ratio, the actual values of du and dv are immaterial: only the

ratio matters. Thus, without loss of generality, we can just set dv = 1 and solve the

following equation for the two possible values of du and get two directions:

() () ()LF ME du LG EN du MG NF− + − + − =2 0 .

Equation 6.14

If we denote the two roots of Equation 6.14 by du1 and du2, the two directions are

xudu1 + xv and xudu2 + xv.

6.6.3 Correspondence of Principal Curvatures to Principal Directions

We do not know which principal curvature is correspond to which principal direction

from results obtained in 6.6.2. We solve this problem as follows. A real number k is

a principal direction in the direction du:dv if and only if the following condition is

satisfied [LIPS69]:

() ()
() ()
L kE du M kF dv
M kF du N kG dv
− + − =
− + − =

0
0

.

Equation 6.15

E f
F f f
G f

u

u v

v

= +
=

= +

1

1

2

2

,
,

,

L f W
M f W
N f W

uu

uv

vv

=
=
=

/ ,
/ ,
/ ,

 26

Equation 6.15 is again a bit subtle. We denote the two roots of Equation 6.12 by k1

and k2. As there are only two ways to pair up the principal curvatures and principal

directions, we just assume one of them, i.e., k1 corresponds to du1:1, and check if the

following is satisfied:

() ()
() ()
L k E du M k F
M k F du N kG
− + − =
− + − =

1 1 1

1 1

0
0

.

Equation 6.16

If not, it means that our way of pairing up the principal curvatures and principal

directions is not correct so we just swap them.

6.6.4 Back Transformation of Principal Vectors

The final but very important thing to do is to transform the principal vectors back into

the object coordinates since all the computation is done in a coordinate system local

to the vertex as described in 6.6.1. Also, the principal vectors should be normalized.

6.6.5 Special Case: Principal Parameter Curves

There is a special case where the velocity vectors xu and xv at a point are already in

the principal directions, i.e., the parameter curves at that point are in the principal

directions. This is true if and only if F = M = 0 [LIPS69]. We have to check this

condition beforehand and if it is true, we should not solve Equation 6.14 and the two

principal vectors are simply xu and xv. We still have to determine the correspondence

between the principal curvatures and principal directions as described in 6.6.3, but

instead of Equation 6.16, the condition to check is

()
()

L k E du
M k F du

− =
− =

1 1

1 1

0
0

.

Equation 6.17

6.6.6 Umbilic Points

The discussion above generally assumes that a point is non-umbilic6. However, this

should not concern us since even if a point is umbilic, our scheme still works and it

will be just that Equation 6.12 has a repeated root and Equation 6.14 gives two

6 An umbilic point is one whose normal curvature is constant, i.e., any direction tangent to the
underlying surface at the point is a principal direction. Refer to [ONEI66] or any other book on
differential geometry for details.

 27

directions which are orthogonal to each other, and must be principal directions (since

the point is umbilic anyway).

6.6.7 Estimation of Normal Vectors

Our current implementation assumes that the input normal vectors are accurate

enough so that we can just use them directly. However, if one believes that the

normal vectors are not accurate enough or if they are simply unavailable, the scheme

described in 6.6.1 can be used to estimate the normal vector of a vertex also. In this

case the linear terms in Equation 6.9 do not vanish. The constant term is still zero

since the surface must pass though the vertex anyway. The only difference is that we

do not assume the z-axis is normal to the surface. That means the local coordinate

system has its origin at the vertex but has no restriction on the choice of the z-axis.

(The original z-axis of the object coordinates would be a natural choice.) Now

instead of solving Equation 6.11, we have to find the least square solution to a system

of five or more linear equations, as the two linear terms are included this time. After

obtaining the surface, we can find the two velocity vectors xu and xv at the origin (i.e.,

the vertex) and then perform a cross product with these two vectors. The normalized

cross product is the estimated normal vector for the vertex. Note that for this scheme

to work, each vertex must have at least five neighborhood points.

6.7 Practical Consideration

When a vertex is perturbed, all polygons sharing the vertex will be affected. This

poses a great practical difficulty for our algorithm. As mentioned earlier, the

conventional graphics pipeline treats polygons independent of each other. Not only is

it true that the graphics pipeline has no idea about which polygon is adjacent to

which, it is also true that it does not know which vertex is shared by which polygons!

To facilitate perturbation of silhouette vertices, merely providing polygon

neighborhood information with auxiliary vertices is not enough. The graphics sub-

system must somehow know which polygons are sharing a particular vertex. More on

this issue will be discussed in section 8.

7. Scan-Conversion of Silhouette Polygons

This is a crucial step in our algorithm which makes a rendered polyhedral mesh have

a smooth silhouette. In this step, silhouette edges are not rendered as straight line

 28

segments. Rather, they are rendered as curve segments, which join together with each

other with G1 continuity, thereby making the silhouette appearing as a smooth curve.

7.1 Obtaining the Curve for Replacement of a Straight Silhouette Edge

Given a silhouette edge, we have two silhouette vertices, each of which has a normal

vector for the purpose of shading in the conventional graphics pipeline. Such normal

vectors are indeed important clues to how the underlying surface actually looks like,

and, if they are projected on the projection plane, also convey information on what

curve the silhouette of the underlying surface actually is.

Again for simplicity, we assume orthographic projection. Thus, in eye

coordinates, into which normal vectors must be transformed for shading, we can just

drop the z-component of a normal vector to get its projection. Now for a silhouette

edge in window coordinates, we have two vertices, i.e., two endpoints, and each of

them is associated with a normal vector, all things being in a 2D plane. If we rotate

the normal vectors both in the same direction (clockwise or counter-clockwise) by

90°, we get two tangent vectors. Obviously a curve which interpolates the two

endpoints and the two tangent vectors is a perfect candidate for replacing the straight

silhouette edge. This situation naturally calls for Hermite curves, or Hermite

interpolation. A Hermite curve which interpolates two endpoints P0 and P1 with

tangent vectors ′P0 and ′P1 respectively is given by the vector equation

P P P P P P P P P P P() () ()u u u u= − + ′ + ′ − − + ′ + ′ + ′ +2 2 3 3 20 1 0 1
3

0 1 0 1
2

0 0

Equation 7.1

where u ∈ [0, 1]. Many books on computer graphics or geometric modeling such as

[FOLE90] and [MORT97] have detailed descriptions on Hermite interpolation

curves.

7.2 Magnitudes of Tangent Vectors

The two tangent vectors obtained by rotating the two normal vectors have a

magnitude of one since normal vectors are unit vectors. That means they only give

directions. However, tangent vectors with only directions but no valid magnitudes

simply do not give enough information to get a unique Hermite curve since different

magnitudes of the tangent vectors give different curves whose appearances can differ

 29

greatly from one another. Therefore we must find some way to assign appropriate

values to the magnitudes of the two tangent vectors.

7.2.1 Approximation of Circular Arcs by Hermite Curves

Mortenson describes a way of using a Hermite curve to approximate a circular arc

[MORT97]. Our method of assigning tangent vector magnitudes is based on this.

Figure 8 shows a situation where we want to approximate a circular arc with a

Hermite curve. Q0 and Q1 are points in a circular arc of a circle with radius r and

center C. θ is half of the angle subtended by the circular arc. The normal vectors of

this circular arc at Q0 and Q1 are n0 and n1 respectively, with corresponding tangent

vectors v0 and v1. Q is the intersection of the line passing through Q0 along the

direction of v0 and the line passing through Q1 along the direction of v1. Q0 and Q1

are the two endpoints with tangent vectors v0 and v1 which a Hermite curve is going

to interpolate in a way such that the curve tries to approximate the circular arc. Now

v0 and v1 are just unit vectors which give directions only. Using different magnitudes

for them will give different curves. To approximate the circular arc, the two tangent

vectors used in [MORT97] so as to obtain a unique Hermite curve are 4ρ(Q - Q0) and

4ρ(Q1 - Q), where ρ = cosθ/(1 + cosθ). By finding the two tangent vectors directly,

we have essentially found the appropriate magnitudes for v0 and v1.

 30

7.2.2 Finding the Tangents in General

If two silhouette vertices and their tangent vectors are actually from a circular arc, we

can use the method just mentioned to obtain a Hermite curve. However, in general,

we cannot find a circular arc to pass through two arbitrary silhouette vertices and their

tangent vectors. Our sole purpose of using the technique of circular arc

approximation just mentioned is to obtain some valid values for the magnitudes of the

two tangent vectors of the silhouette vertices. We believe that when a Hermite curve

tries to approximate a circular arc, the magnitudes of the tangent vectors at the two

endpoints have values which make the curve look natural and good. Thus in any

case, as long as we can find some (reasonable) circular arc for the Hermite curve to

approximate, we can find some good values for the magnitudes of the tangent vectors.

Q

C

Q0

n0

v0

θ

n1

v1
Q1

θ

Figure 8

 31

Figure 9 illustrates the technique we use to get a circular arc from two

silhouette vertices Q0 and Q1 which are not necessarily in a circular arc. n0 and n1 are

normal vectors of Q0 and Q1 as given by the polyhedral mesh, and v0 and v1 are their

corresponding tangent vectors. We draw a line passing through Q0 along n0 and a

line passing through Q1 along n1 to get an intersection point C, which will be

regarded the center of the circle to which the circular arc belongs. Then we move Q0

in one direction along n0 and move Q1 in an opposite direction along n1 by the same

distance t to get two points ′Q0 and ′Q1 respectively such that the line segments ′Q0 C

and ′Q1 C have the same length. Now the triangle ′Q0 ′Q1 C is an isosceles triangle and

we have a situation essentially the same as that in Figure 8, with ′Q0 in place of Q0

and ′Q1 in place of Q1, and hence there exists a circular arc passing through ′Q0 and

′Q1 . With ′Q0 and ′Q1 , we use the same way to get a point Q. The tangent vectors

we need are 4ρ(Q - ′Q0) and 4ρ(′Q1 - Q), where ρ = cosθ/(1 + cosθ).

7.2.3 Technicality

Now we have to get into the details of finding t so as to obtain ′Q0 and ′Q1 from Q0

and Q1, and finding cosθ to get ρ. Using the fact that ∆ ′Q0 ′Q1 C is an isosceles

Q

C

Q0

Q’0

n0

v0

v0

t

t

θ

n1

v1

v1

Q1

Q’1

θ

Figure 9

 32

triangle, we know that ′Q0 ′Q1 must be perpendicular to the angle bisector of

∠ ′Q0 C ′Q1 . The angle bisector can actually be written as n0 + n1. Therefore, the dot

product (′Q1 - ′Q0)•(n0 + n1) is equal to zero. Since ′Q0 = Q0 - tn0 and ′Q1 = Q1 +

tn1, [(Q1 + tn1) - (Q0 - tn0)]•(n0 + n1) = 0. Rearranging, we get

t = −
− • +

+

() ()Q Q n n

n n
1 0 0 1

0 1
2

Equation 7.2

However, since n0 and n1 are unit vectors, we know

n n n n n n
n n n n n n

n n n n n n n n
n n

0 1
2

0 1 0 1

0 1 0 0 1 1

0 0 1 0 0 1 1 1

0 12 2

+ = + • +

= + • + + •
= • + • + • + •
= + •

() ()
() ()

().

Substituting this into Equation 7.2, we get

t = −
− • +

+ •
() ()

()
Q Q n n

n n
1 0 0 1

0 12 1

Equation 7.3

The dot product n0•n1 happens to be equal to cos2θ and since

cos
cos

θ
θ

=
+1 2

2
,

we get

cosθ =
+ •1

2
0 1n n

Equation 7.4

7.2.4 Practical Consideration

Since the computational cost of finding the two tangent vectors required is quite

significant and we have to do it for every silhouette edge, we must look into the

efficiency of some key computation involved carefully. First, we have to evaluate

Equation 7.3 to get t. The reason why we have to use Equation 7.3 instead of

Equation 7.2 is that the computational cost of evaluating the denominator of Equation

7.3 is less than that of Equation 7.2. The other parts of the two equations are just the

same and requires only some simple vector and scalar operations. Second, we have to

 33

find cosθ . Fortunately, as shown in Equation 7.4, we have a value which is

computed in Equation 7.3 and can be reused, which is the dot product n0•n1.

However, Equation 7.4 needs a square root operation, which is quite expensive.

Finally, as described in 7.2.2, we have to find Q to compute the two tangents

required. Computing Q involves finding the intersection of two lines, i.e., finding the

solution to a system of two linear equations.

7.3 Scan-Converting the Curve

After obtaining the curve to replace a straight silhouette edge, we want to scan-

convert this curve segment instead of the original straight edge. In our current

implementation, we virtually subdivide the curve into many small line segments. We

believe that it would be much more efficient to scan-convert the Hermite curve

directly, if such a method of scan-conversion does exist. However, for the purpose of

fast prototyping we just use the method of subdivision for the time being.

7.3.1 Subdivision into Line Segments

See Figure 10 for an example of a curve segment we want to scan-convert. The

figure also shows the original straight silhouette edge and the other two non-

silhouette edges which together form a triangle to render. We assume horizontal scan

lines and bottom-to-top scanning. Also, all the coordinates we mention here are

window coordinates. Conceptually, we subdivide the curve into many small line

segments, the number of subdivision being decided by a heuristic we use: it is equal

to the difference between the y-coordinates of the two endpoints, rounding off to

integer. However, for the ease of illustration and discussion, we subdivide the curve

in this example into 4 segments only. By doing so, we essentially sample 5 points

(P1, P2, …, P5) from the curve.

 34

7.3.2 Non-constant ‘slope’

Let us first recall the original scan-conversion algorithm. Adjacent pixels on the

same scan line which are to be intensified are called a span. The two pixels bounding

the span are called span extrema. When we go from one scan line to the next, we

obtain the x-coordinate of a span extremum by incrementing the x-coordinate of the

span extremum of the previous scan line by a certain value, usually called the ‘slope’,

ideal curve

pixels

intensified pixels representing curve boundary

other intensified pixels

ideal sample points
ideal approximating line segments

non-silhouette edge

actual approximating line segments used

silhouette edge

P1

P2

P3

P4

P5

1

2

3

4

5

6

7

8

9

Figure 10

 35

which is the change in x-coordinate with respect to a unit change in y-coordinate7, or

dx/dy. For a given (straight) edge, the slope is constant. However, in our case, the

slope is not a constant value. We achieve the effect of rendering a curve by changing

the value of the slope regularly while scan-converting along a silhouette edge.

7.3.3 A Step-by-Step Example

We start scan-conversion for the curve in Figure 10 from sample point P1, which is

just an endpoint of the silhouette edge and is given. We call P1 our current point.

Before we do any scan-conversion, we have to obtain the coordinates of the next

sample point (P2) by using forward differences [FOLE90]. The forward differences

are given by the curve itself and the number of subdivisions. If the y-coordinate of

this next sample point (P2) is not greater than that of the current sample point (P1) by

at least 1, we have to find the sample point which is even further (P3). We would

keep on finding further sample points until one with y-coordinate greater than that of

the current point by at least 1 is found. This sample point is called a check point,

whose y-coordinate is called a check value. In this example, P2 is the check point and

we do not have to go any further. Now the slope of our first approximating line

segment can be computed easily from the coordinates of the check point and the

current point. This approximating line segment is called the current approximating

line segment.

For scan line 1, we do not have any pixel to intensify since no pixel there is

inside the triangle. Before we go to the next scan line (scan line 2), we have to check

whether the y-coordinate of the next scan line is greater than the check value or not.

If yes, we have to do something else before continuing. Now it is not the case so we

can go to the next scan line (scan line 2) and obtain the x-coordinate of the right span

extremum by incrementing the x-coordinate of the previous right span extremum (i.e.,

the x-coordinate of P1) by the slope we just computed. After intensifying the

appropriate pixels, we try to go to the next scan line again (scan line 3). However,

this time the y-coordinate of the next scan line is greater than that of the check value.

That means the next scan line is ‘higher’ than the check point, and if we use the

original slope value to increment the x-coordinate, we would step outside the curved

boundary and have a span which goes beyond it. Thus the current approximating line

7 In coordinate geometry, the term slope usually means ‘the change in y-coordinate with respect to a

 36

segment is not valid any more and we have to find a new one and find its slope. Now

we set the current point to be the ‘real’ point corresponding to the current span

extremum, i.e., the point in the current approximating line segment with y-coordinate

equal to that of the current scan line (scan line 2), and find the new check point by

applying forward differences to the previous check point (P2) to find the next sample

point, and keep on using forward differences to find further sample points if

necessary. (It is now clear that why the check point have to have its y-coordinate

greater than that of the current point by at least 1.) The new check point turns out to

be P3. By finding the new current point and check point, we essentially have obtained

a new current approximating line segment and its slope can be computed. We repeat

the process of finding new approximating line segments (and their slopes) and doing

scan-conversion according to them until the check point coincides with the last

sample point (P5) or gets higher than it. In the latter case, we set the check point to be

the last sample point. We scan-convert according to this last approximating line

segment and finish the scan-conversion of the curve segment, which replaces the

original straight silhouette edge.

unit change in x-coordinate’, or dy/dx, which is the reciprocal of our ‘slope’.

 37

7.3.4 The Need for Choosing between Horizontal and Vertical Scan Lines

The set of approximated line segments used in Figure 10 is a rather rough

approximation to the original curve. In our implementation the approximation is

much more accurate since we use more subdivisions. Recall the heuristic we use: the

number of subdivisions is equal to the difference between the y-coordinates of the two

endpoints, rounding off to integer. However, this scheme may cause problems. See

Figure 11 for an example, which uses the same legend as Figure 10 does. The curve

in Figure 11 is certainly not rendered satisfactorily, and may be considered

unacceptable altogther, as something like Figure 12 is normally expected. There are

mainly two problems in Figure 11. First, as the difference between the y-coordinates

of the two endpoints is too small, the number of subdivisions is also too small.

Second, the first candidate check point, P2, is already higher than the higher endpoint

P3, so, according to our scheme as described in 7.3.3, the check point will simply be

set to be the higher endpoint P3, which causes only one approximating line segment to

P1

P2
P3

Figure 11

 38

be used and the scan-conversion will go as if the straight silhouette edge were

rendered as it is but not replaced by some curve.

In such a case, we should use vertical scan lines and set the number of

subdivisions to be the difference between the x-coordinates of the two endpoints.

Thus, before scan-converting a silhouette edge, we have to check whether the

difference between the x-coordinates is greater than that between the y-coordinates of

the two endpoints. If yes, we will use vertical scan lines and the number of

subdivisions is equal to the difference between the x-coordinates. Otherwise, we use

horizontal scan lines and the number of subdivisions is equal to the difference

between the y-coordinates.

7.4 Shading

Since we are not rendering an outlined polyhedral mesh but a smoothly shaded one,

we must take care of shading also. We assume Gouraud shading, as it is arguably the

most commonly used shading method for interactive computer applications. For

Figure 12

 39

simplicity, we also assume that our polyhedral mesh are composed of triangles. In

Gouraud shading, a triangle is shaded by linear interpolation of vertex color values

along each edge and then between edges along each scan (see Figure 13a). Due to the

replacement of straight silhouette edges with curve segments, the silhouette triangles

are no longer triangles now but some fan-shaped objects (see Figure 13b). Problems

arise from how to shade such objects.

 40

We use a straightforward scheme to handle the shading of silhouette triangles.

Due to the new shape of a silhouette ‘triangle’, on each scan line the visible span of

(a)

(b)

(d)

Intensity interpolation along polygon edges and scan lines

y

I1

Ia Ip Ib

I3

I2

y1

scan line

y2

y3

I I I I
y y
y y

I I I I
y y
y y

I I I I
x x
x x

a
s

b
s

p b b a
b p

b a

= − −
−

= − −
−
−

= − −
−

−

1 1 2
1

1 2

1 1 3
1

1 3

()

()

()

scan
line

original
span

new span
(longer)

{

scan
line

original
span

{{ {

{

new span
(shorter)

(c)

10 pixels

5 pixels

Original intensity values:

Original intensity values:

New intensity values:

New intensity values:

scan
line

0.25

7 pixels

{

0.39

scan
line

0.25

7 pixels

{

0.39

0.25 0.264 0.278 0.293 0.306 0.32 0.334 0.348 0.362 0.376 0.390.25 0.27 0.29 0.31 0.33 0.35 0.37 0.39

0.25 0.27 0.29 0.31 0.33 0.35 0.37 0.39

0.25 0.39

0.25 0.278 0.306 0.334 0.362 0.39

0.25 0.39

(e)

Figure 13

 41

the triangle now becomes longer or shorter than the original one (see Figure 13c). In

either case, we use the color values of the two boundary points of the original span as

the color values of the two boundary points of the new span. Then we do color

interpolation as usual to fill the new span (see Figure 13d and Figure 13e). Using this

scheme, we have essentially ‘stretch’ or ‘shrink’ each span according to the silhouette

curve segment. Note that in the figures we just use a single value intensity to refer to

a color component for simplicity. In fact, depth values, or z values, are also

interpolated using the same scheme.

8. Implementation Issues

Our implementation is based on Mesa [PAUL95], a free 3D graphics library with an

API (Application Programming Interface) ‘very similar’ to that of OpenGL. As a

matter of fact, this library is indeed a software implementation of OpenGL. We

modified the source code of Mesa and added our own, new API functions so that it

can render polyhedral meshes according to our new method.

We believe that basing our implementation on some existing (and reliable)

code rather than doing it all from scratch has at least two major advantages. The first

one is convenience, since we can save ourselves from implementation not directly

related to our idea, such as transformation, lighting calculation, and so on. Also, we

can write our testing programs in a way very similar to that of writing ordinary

OpenGL programs, except that we also use the new function calls added by ourselves,

and use GLUT for building simple user interface. The second advantage, which may

be more important, is that we can easily notice what modifications are needed in the

conventional 3D graphics pipeline so that it can incorporate our new method of

rendering smooth surfaces. Since Mesa is virtually an implementation of OpenGL,

which, as a 3D graphics API, is in turn an implementation of the conventional 3D

graphics pipeline, we know exactly how the pipeline can be modified to incorporate

our method after we have modified the source code of Mesa to implement our

algorithm.

8.1 A Polyhedral Mesh as a Whole, Not Separate Polygons

To facilitate perturbation of silhouette vertices, the graphics sub-system must have

access to the whole polyhedral mesh throughout the process of rendering. It is

 42

because when a vertex is perturbed, all polygons sharing the vertex essentially

become different in terms of geometry, as one of their vertices is changed. The

graphics sub-system must be able to make the changes for those polygons before

rendering them, and therefore it has no choice but to wait for the process of

identifying silhouette polygons and that of perturbing silhouette edges to finish before

actually rendering the polygons.

This contrasts with what is being done in the conventional graphics pipeline,

in which polygons are treated individually, and they are immediately processed and

rendered upon arrival at the pipeline, without the need for waiting for other polygons.

Not only polygons, but also vertices are processed independent of each other to some

extent. A vertex is transformed, undergoes lighting calculation, etc., as soon as it is

sent to the graphics pipeline, without waiting for other vertices, except that before

rendering, it must wait for other vertices as all vertices of a polygon must be available

before they can be rendered. All operations of the graphics pipeline can indeed be

done in a pipeline fashion: while a vertex is undergoing lighting calculation, another

vertex which comes after is being transformed, and yet another vertex which came

before is waiting for them so that a triangle can be rendered later; with respect to

polygons, the situation is similar. Our algorithm does not enjoy this pipeline

property, since a polyhedral mesh must be seen as a whole, not separate polygons.

8.2 Specification of Vertices and Associated Data

Our algorithm imposes certain restrictions on the format of specifying vertices and

their associated data for the graphics subsystem. Unlike the case of the conventional

graphics pipeline, where vertices can be specified one by one without relation to each

other, our algorithm requires that all vertices of the entire polyhedral mesh to render

must be passed to the graphics sub-system as a whole, for reasons mentioned in 8.1.

The best way to do so would be storing the vertex coordinates in an array and

then passing the pointer to this array to the graphics sub-system. Let us call this array

a vertex array. However, the vertex array alone are not enough for specifying a

polyhedral mesh. We must also have an array of indices which point to individual

elements of the vertex array, to tell how the vertices constitute different faces. This

array of indices would be called a vertex pointer array. An example is shown in

Figure 14a and Figure 14b, where a tetrahedron is specified. The first face is formed

 43

by the vertices with indices 2, 1 and 0, and the second face is formed by the vertices

with indices 1, 3 and 0, and so on.

Note that using a format such as that in Figure 14c to specify the tetrahedron

is not acceptable. The vertices specified in the vertex array must be unique, i.e., a

vertex can be specified in the vertex array once and only once. This restriction is for

the convenience of perturbation of silhouette vertices. If a vertex is moved, we just

have to change its entry in the vertex array and the polygons sharing the vertex will

have been changed accordingly. The requirement for specifying vertices through a

vertex array with unique vertices and a vertex pointer array provides the graphics sub-

system with enough information to perform perturbation of silhouette vertices

conveniently and efficiently.

Other than catering for perturbation of silhouette vertices, the format of vertex

data specification must also facilitate identification of silhouette polygons. That

means there must be some way to specify auxiliary vertices. Using the tetrahedron in

Figure 14a as an example, we can specify auxiliary vertices using an auxiliary vertex

pointer array as shown in Figure 14d. Note that the face consisting of the vertices

pointed to by entries in the vertex pointer array with indices i, i+1 and i+2 have

auxiliary vertices pointed to by entries in the auxiliary vertex pointer array with

indices i, i+1 and i+2. This corresponds to Vi, Vi+1, Vi+2 and Ai, Ai+1, Ai+2 in the

definition of auxiliary vertices. The auxiliary vertex pointer array has the same

number of elements as the vertex pointer array.

 44

(a)

(-1, 2, 1)

(3, -1, 1)

(0, -2, 2)

(2, 0, 0)

vertex array

array
index

(-1, 2, 1) (3, -1, 1)(0, -2, 2)(2, 0, 0)

vertex pointer array

2 1

10

0 1 3 0 2

2

20 3

3

31
array
index 10 2 3 4 5 6 7 8 9 10 11

(b)

vertex pointer array

array
index 1

1

0

0

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

vertex array

array
index 10 2 3 4 5 6 7 8 9 10 11

(c)

auxiliary vertex pointer array

3 3 3 2 2 2 1 01 1 00
array
index 10 2 3 4 5 6 7 8 9 10 11

(d)

Figure 14

 45

Besides the above, our algorithm also requires the graphics sub-system to

know the normal vector, the two principal curvatures and the two principal directions

associated with each vertex of the polyhedral mesh to render. These can be specified

with a normal vector array, a k1 array and a k2 array, together with an e1 array and

an e2 array respectively. All these arrays have the same number of elements as the

vertex array, since they are data associated with the vertices on a per-vertex basis.

Therefore, to specify a polyhedral mesh for our algorithm, one has to provide the

graphics sub-system with a total of eight arrays of data, with the restrictions

mentioned above.

8.3 Preprocessing

Ordinary polyhedral mesh data are certainly not in the format just described above.

They are usually presented in the form of individual polygons, since it is exactly what

the conventional graphics pipeline needs to render them. Having such a set of mesh

data in hand, we have to derive adjacency information from them so as to present

them in the form of a vertex array, a vertex pointer array and an auxiliary vertex

pointer array. For the normal vector array, if different occurrences of a unique vertex

has the same normal vector throughout the original mesh data, the task is trivial. For

the curvature information, i.e., the principal curvatures and the principal directions,

we have to estimate them once we obtain the adjacency information, using the

technique of least-squares surface fitting as mentioned earlier.

Given a set of individual polygons as input, we currently use a rather brute

force approach to find out the adjacency information of the underlying mesh, and we

assume that the input are triangles. Our aim is to obtain an adjacency list of the graph

as presented by the mesh and a list of triangles which links their vertices back to the

nodes of the graph. For each input triangle, we check whether each of its edges is

already present in the adjacency list or not. If not, insert the edge, and in any case

add the triangle to the triangle list and establish the links between the edges and the

triangle. After we have exhausted the triangles of the original input data, we will

have the adjacency information we need to prepare the input format of mesh data

required by our rendering algorithm.

Note that the above processing only involves information which remains

invariant during interactive display of the polyhedral mesh. That means the

 46

information is view-independent and therefore is obtained before interactive display.

Hence, this is a preprocessing step, which does not affect the efficiency of interactive

rendering by our algorithm.

8.4 Assumptions and Limitations of the Current Implementation

Our current implementation of the algorithm is not a really general one. It relies on

certain assumptions and have some limitations. First of all, we assume the input

polygons are all triangles. Also, the polyhedral mesh is supposed to represent a

closed, smooth curved surface, with no sharp corner or edges. Further, the

implementation is currently limited to orthographic projections only. All these are

just for the purpose of fast prototyping and we believe that our algorithm can exceed

these limits after some modifications. A more general implementation will be under

way.

8.5 After Thought: An Alternative Implementation

There is an alternative way to implement our algorithm which introduces fewer

changes to the traditional graphics pipeline: we can move most of the extra processing

introduced by our algorithm away from the pipeline and consider it some kind of

preprocessing. Recall the four steps depicted in section 4. For Step 1, i.e.,

identification of silhouette polygons, our current implementation already does it quite

deep inside the ‘pipeline’, i.e., after the transformation of all vertices into window

coordinates. The reason is that traditional visible-face determination is done in

window coordinates, and we can make use of the result of such processing, which

must be done anyway. Step 2, perturbation of silhouette vertices, is done in eye

coordinates, but since Step 1 already requires transformation into window

coordinates, which is done after transformation into eye coordinates, it does not make

any difference. Step 3 is almost in the lowest level of the ‘pipeline’ as it involves

scan-conversion. Step 4 is the same old thing which does not concern us.

Step 1 involves visible-face determination, but it is not a must to do it in

windows coordinates: it can also be done in object coordinates. The only difference

is that we use another way to determine whether a face is back-facing or not, i.e., to

perform a dot product with the face normal and the direction of projection and check

whether it is negative or not. Step 2 can also be done in object coordinates, though

the computation thus involved will be a bit not as simple as that in eye coordinates.

 47

Since these two Steps can be done in object coordinates, it is possible to move them

out of the graphics pipeline altogether. That means we identify silhouette polygons,

and perform the necessary perturbation of vertices in our own data structure, which is

external to the graphics pipeline, before sending the vertex data to the pipeline. After

these two Steps are done, the vertex data can be passed to the graphics pipeline as

individual vertices in the same old fashion! The graphics pipeline still needs

modification, but only for the scan-conversion part. It is even better if the graphics

pipeline can reuse the result obtained in visible-face determination done in Step 1.

This way of implementation sounds really tempting. The reason for not doing

so can be considered ‘historical’. There is no reason why we would not consider

doing the implementation all over again in this alternative way.

9. Quality

For a static image of a smoothly shaded polyhedral mesh rendered by our algorithms,

the quality of the silhouette should be very visually pleasing since the silhouette is

guaranteed smooth, as curve segments replacing straight silhouette edges are joint

together with each other with G1 continuity. For example, see the Color Plates,

which show images of some simple surfaces rendered by our algorithm. Using our

algorithm, the faithfulness of a polyhedral mesh to the underlying curved surface

depends mainly on the accuracy of the polyhedral model, including that of the

vertices, normal vectors and computed or estimated curvatures. Quality of frame-to-

frame coherence during animation (i.e., rotation) depends on how accurate our

assumptions made in the process of perturbation of silhouette vertices are, and of

course depends on how accurate the curvature information is.

So far we have only tried rendering models which represent simple surfaces

and have an exact mathematical description. In fact, we generated the polyhedral

meshes by ourselves using their mathematical descriptions. Our algorithm is meant to

be applicable to arbitrary polyhedral meshes. However, due to the lack of suitable

models (those which are smooth every where and do not have sharp corners/edges),

we have been unable to test our algorithm thoroughly. A more extensive testing will

be done in future.

 48

10. Performance

It is difficult to make an objective measurement of the performance of our algorithm

compared to the conventional method for several reasons. We will see some possible

ways of comparing the performance of the two algorithms one by one.

10.1 Comparison to the Conventional Rendering Algorithm

If both algorithms render the same mesh, i.e., the numbers of polygons to render are

equal, our algorithm must be slower than the conventional algorithm since extra

computation is needed to handle the silhouette. This would not be a fair comparison,

but it is still worthwhile to do such a comparison since we can know how slow our

algorithm is when compared to the conventional method.

Alternatively, we can compare the rendering speeds of the two algorithms

such that they produce images with silhouettes of the same or comparable quality.

However, this almost implies that the conventional algorithm must use (much) more

polygons than ours does to achieve the same silhouette quality. What remained to see

is virtually whether the extra computation for handling silhouette edges of our

algorithm compensate for the otherwise increase in number of polygons to render or

not. A major difficulty here is that judging the quality or smoothness of silhouettes

may be subjective. Also, if the two methods produce silhouettes of the same or

comparable quality, the quality of shading produced by the conventional method is

probably better since more polygons are used. This would neither be a fair

comparison.

An ideal comparison might be made in the case where the two methods

produce images of the same image quality in terms of both the silhouette and shading.

Again, we have to resort to subjective judgement.

10.2 Obvious Performance Penalties and Some Counter Arguments

Nevertheless, there are arguably some obvious performance penalties of our

algorithm in comparison with the conventional one. First, vertices and polygons can

no longer be processed in a pipeline fashion as they cannot be treated as independent

of each other. Efficiency gained by pipeline processing will be lost in our algorithm.

Also, the graphics sub-system must have a notion of a polyhedral model as a whole.

Owing to this, the graphics sub-system may have to have access to external memory

 49

since it is simply impractical to imagine a graphics sub-system implemented in

hardware has enough internal memory to house a polyhedral mesh as a whole. Since

accessing external memory is usually slower than accessing internal one, the

rendering speed would be slower. Moreover, more data per vertex is needed to pass

to the graphics sub-system, namely auxiliary vertices and curvature data.

However, the features mentioned above may not be totally undesirable. As

mentioned earlier, our algorithm requires a programmer to provide vertex data using

arrays, and in a way such that each shared vertex must be specified only once since

perturbation of vertices are needed. For the conventional graphics pipeline, if the

primitive type is triangles, the same vertex would be specified and therefore undergo

transformation, lighting calculation, etc., more than once since a vertex is usually

shared by three or more triangles. Our requirement can be considered desirable since

each vertex is guaranteed to undergo all processing once. This may compensate for

the performance penalty of the inability of pipeline processing. Further, the

requirement of the graphics sub-system to access external memory may not be much a

penalty, as our way of specifying vertex data is very similar to that of using vertex

arrays in OpenGL, which is an extension added to the more recent versions for

increased performance, since it was found that specifying vertices one by one

consumes many procedures and is therefore inefficient. After all, the real obvious

performance penalty of our algorithm may be just the extra computation for detecting

and handling silhouette polygons, for which there is no desirable characteristics to

compensate in terms of efficiency. One more important point to note is that it would

be an entirely different story if we implement our algorithm in the way described in

8.5.

10.3 Some Timing Information

Here we present a comparison of the frame rates achieved by our algorithm to those

by the conventional one (Figure 15)8. Polyhedral meshes with different number of

triangles are rendered (Figure 16)9. The meshes are supposed to represent spheres

and are produced by subdivision of an icosahedron (a twenty-face Platonic solid) as

described at the end of Chapter 2 in [WOO96]. The machine used is a Pentium Pro

8 Note that the x-axis of Figure 15 is not in scale.
9 Note that all meshes rendered by our algorithm exhibits smooth silhouettes regardless of the number
of faces.

 50

200 running Linux with 96MB of main memory. Our rendering is done with the

implementation of our algorithm based on Mesa [PAUL95] while the conventional

rendering is done with the original Mesa, both of which do not have any hardware

acceleration for 3D graphics. The data are obtained by continuously rotating the

meshes along x-axis and measuring the time needed to render each frame. We have

rendered 100 frames for each mesh and the orientations of two consecutive frames

differ by 1 degree. See the Appendix for the timing data obtained.

We can see some surprising results. Using our algorithm, the frame rate of

rendering a mesh with only 20 triangles is lower than that with 80 triangles. This is

probably due to the fact that using our algorithm, processing pixel spans for a

silhouette triangle is computationally more expensive than that for an ordinary

(interior) triangle. With only 20 triangles, most of the triangles are silhouette

triangles and therefore almost all pixel spans are processed in the slow fashion,

making the rendering time very long.

Another strange result is that the frame rate of rendering a mesh with 1290

triangles using our algorithm is faster than that using the conventional algorithm!

The reason is that our mesh has been preprocessed, i.e., each shared vertex is

specified and processed only once, but the mesh for conventional rendering are

presented as individual triangles, so a shared vertex may undergo processing many

times. As there are many triangles, the saving of computation of our algorithm

0

5

10

15

20

25

30

20 80 320 1280

No. of faces

Fr
am

e
ra

te
 (f

ra
m

es
 p

er
 s

ec
on

d)

Our rendering

Conventional
rendering

Figure 15

 51

becomes significant. Also, pixel spans that are processed in the (slow) fashion for

silhouette triangles are much fewer than those which are processed in the original

(fast) fashion.

11. Future Work

The top-priority thing to do would be an extensive testing of our algorithm on

arbitrary polyhedral meshes, as mentioned in section 9. Besides, our work as

described here leaves a number of places for future enhancements and extensions.

Some of these will improve our existing algorithm both in terms of efficiency and

quality. Others will increase the applicability of the algorithm.

11.1 Better Curvature Estimation

It is possible to find if there are better ways for curvature estimation. Recall that

given an arbitrary polyhedral mesh for which we do not know what the underlying

curved surface is, we have to estimate the principal curvatures and principal

directions for each vertex to facilitate perturbation of silhouette vertices, as described

in Section 6. We currently use the method of least square surface fitting. So far we

have not done a serious survey on different methods of curvature estimation. It

Conventional rendering

Our rendering

Figure 16

 52

should be worthwhile to see if we can do curvature estimation more accurately, since

curvature information is crucial to perturbation of silhouette vertices, which in turn

determines the quality of frame-to-frame coherence during animation.

11.2 Better Way of Scan-Converting the Silhouette Curve Segment

Our way of scan-converting the curve segment which is used to replace a straight

silhouette edge is a rather ad-hoc and inefficient one. As described in 7.3, we have to

change the value of the ‘slope’ regularly. Computation of a slope requires a floating-

point division, which is considered quite expensive in the low level. In the original

scan-conversion algorithm, every edge is a straight edge and the slope is computed

only once for each edge, since the slope of a straight line is a constant value. In our

case, as we have to change the value of the slope, we have to perform several

floating-point divisions while scan-converting a silhouette edge. If we can scan-

convert the curve directly using forward differences, i.e., without breaking the curve

into many small line segments (like scan-converting a circular arc), we can replace

those extra floating-point divisions by some floating-point additions. It would be

another interesting topic to see if we can scan-convert a Hermite curve directly.

11.3 Preservation of Sharp Corners and Edges

Our algorithm assumes that an input polyhedral mesh represents a surface which is

smooth everywhere, i.e., it has no sharp corners and edges of any kind. This

assumption is somewhat unrealistic. Although objects in reality do have many parts

which can be represented by smooth curved surface patches, those parts nevertheless

may join together with each other at sharp corners or edges. Just look around and you

would be amazed by how few objects there are which do not have at least one or two

sharp corners and/or edges. In order to make our algorithm a practical one, we must

modify it so that it can handle sharp corners and edges.

For handling a sharp edge, one way to do so is to regard a shared vertex which

is on a sharp edge as two separate vertices. Using this convention, two faces jointed

at a sharp edge will not be counted as neighbors. If we use a further convention that

any edge which is not shared is not a silhouette edge, we should be able to handle the

problem of sharp edges. However, handling sharp corners like apices of cones will be

much more difficult.

 53

Another way is to provide a way of specifying vertices for users such that they

can simply label the vertices at sharp corners and/or edges and therefore the algorithm

can know where these sharp corners and/or edges are. The process of determining

which vertex should be labeled is supposed to be done in the modeling phase.

Yet another way is to preprocess the mesh so as to check whether the angle

between a pair of faces is smaller than a threshold value called the crease angle. If

the angle is smaller than the crease angle, the edge shared by the two faces is

considered an sharp edge. The crease angle should be a value which can be modified

by users.

11.4 Textures

Textures are now an almost indispensable part of interactive computer graphics

applications. Virtual reality, computer animation, video games and so on all involve

extensive use of textures, as it is a rather computationally inexpensive way which can

increase the realistic effect of rendered objects tremendously. Our algorithm

currently does not take textures into account. Though we believe that texture

coordinates are just like RGB color components and depth values in a sense such that

they can all be interpolated in the way described in 7.4, we cannot be sure about the

visual effect thus obtained. We have to modify the current implementation to test

whether this idea is viable or not.

11.5 Incorporation into Traditional Graphics Sub-systems

Although our way of rendering polyhedral meshes is different from that of traditional

graphics sub-systems in a number of ways, the former is based on the traditional scan-

line algorithm integrated with Gouraud shading, which essentially forms the core of

the latter. In other words, the two are significantly similar. From the experience of

our implementation, it is clear that our algorithm can be incorporated into a traditional

graphics sub-system implemented in software without major technical difficulties,

since we modified the source code of Mesa, a de-facto software implementation of

OpenGL, which in turn is an implementation of the traditional graphics pipeline, to

implement our algorithm instead of writing all our own code from scratch.

However, when it comes to graphics sub-system implemented in hardware,

which is nowadays a commonplace, problems arise. The original scan-line algorithm

integrated with Gouraud shading is really a simple, elegant and efficient algorithm,

 54

which is suitable for cost-effective hardware implementation. As our algorithm takes

various measures to identify and render silhouette polygons, which is not done in the

original algorithm, it can hardly be expected that our algorithm enjoys the same

suitability for hardware implementation as the original one. We are somehow placed

in a dilemma: 3D computer graphics are made commonplace because of efficient and

inexpensive graphics hardware but our algorithm, which is meant to improve the

quality of 3D computer graphics in a relatively computationally inexpensive way,

may not be that suitable for hardware implementation. A serious and thorough

investigation into the possibility of efficient and cost-effective hardware

implementation of our algorithm is certainly out of the scope of this work. We,

however, believe that it would be worthwhile to do such an investigation if resources

allow.

12. Conclusion

We have introduced a new way of directly tackling the well-known problem of

polygonal silhouettes of polyhedral meshes rendered by interpolated shading. The

algorithm we propose does not involve any radically new theories or techniques

which are unknown to the computer graphics community. Rather, our algorithm is

based on the original, already widely used scan-conversion algorithm integrated with

Gouraud shading. We have borrowed theories and techniques from differential

geometry and curve interpolation, while adding several workarounds to various

places to construct our algorithm.

The conventional way of rendering polyhedral meshes is modified such that

those originally straight silhouette edges which would otherwise join together with

each other at sharp corners are now replaced by appropriately curved edges which

join together with each other with G1 continuity, thereby yielding a rendered mesh

with a silhouette which is guaranteed smooth. Our method does not increase the

number of polygons to render and has decoupled improving the smoothness of the

silhouettes from improving the smoothness of shading, in contrast to what is

commonly being done. Although extra computation and special requirements on the

format of input data are needed to identify silhouette polygons, to appropriately

process them and finally render them, and our algorithm does not enjoy the efficiency

of pipeline processing like the conventional algorithm does, all this extra overhead

 55

can hopefully be offset by the performance gained by rendering a much smaller

number of polygons than that would be needed by the conventional rendering

algorithm to obtain a silhouette which is guaranteed smooth. This performance gain

cannot be overlooked since if a polyhedral mesh rendered by the conventional way

has to have a silhouette which is guaranteed smooth, the mesh has to be subdivided

into many tiny polygons, each of which must be smaller in size than a pixel, which

means that if an object occupies a significant portion of the computer screen, the

number of polygons to render can by very large.

It cannot be claimed that our new algorithm is better and faster than the

conventional one in rendering smoothly shaded polyhedral meshes with smooth

silhouettes by the results obtained so far. It is even hard to predict the practicality of

our algorithm. Nevertheless, we believe that this work has at least proposed a new

perspective of looking at the problem of polygonal silhouettes of smoothly shaded

polyhedral meshes, and hopefully can lead to some new research directions in this

area.

 57

14. Appendix
 20 face 80 faces 320 faces 1290 faces
 Frame rendering time

(microsecond)
Frame rendering time
(microsecond)

Frame rendering time
(microsecond)

Frame rendering time
(microsecond)

 Our
rendering

Conventional
rendering

Our
rendering

Conventional
rendering

Our
rendering

Conventional
rendering

Our
rendering

Conventional
rendering

 53113 34796 40076 34764 47016 46547 65678 70564
 53163 35233 40070 36688 47053 46558 65676 70495
 53159 35184 40125 34915 46923 48167 65622 70579
 53154 35372 40038 35018 46696 49718 67398 78894
 53131 37445 40066 35080 46723 44667 65444 72951
 53140 35678 40211 35189 46974 44767 67717 77214
 51633 35839 40254 35164 46652 44678 70634 70561
 51601 35956 40248 35163 46687 44584 70725 70602
 51569 36673 40253 35199 46815 44570 68673 70432
 55043 36198 40196 35229 46812 44554 65736 70466
 51518 36324 40216 35421 46807 44597 65696 71027
 51491 36488 40206 35156 46866 44643 65637 70462
 51454 38410 40189 35136 46537 44572 65763 70495
 51432 36662 40169 35162 46558 44544 65588 70447
 51400 36712 40157 35066 46474 44533 65416 70421
 51406 36795 40164 35012 46410 44436 65392 70386
 51375 36770 40145 37339 46566 44970 65404 70374
 51325 36785 39788 36911 46537 44434 65481 70286
 51303 36811 39554 38513 46397 44490 65438 70267
 51292 36811 39776 36831 46465 44364 65362 70185
 51288 36765 39872 36832 46471 44356 65422 70123
 51255 36745 39839 38425 46389 44218 65390 70094
 51786 36711 39787 34959 46417 44289 65383 70036
 51265 36679 39774 34888 46448 44505 65216 69894
 51273 36551 41581 34817 46480 44296 65124 69890
 51253 36469 41536 34684 46400 44276 65021 69972
 51302 36370 39692 36229 46511 44431 64953 70437
 51245 36289 41518 34580 46559 44209 64683 69780
 51269 36159 41482 34529 46475 44113 64774 69594
 51329 36056 39655 34531 46391 44116 65000 69734
 51302 36007 39529 34493 46356 44137 64995 69766
 51362 35842 39539 34453 46357 44236 65230 69933
 51503 35727 39502 34436 46308 44275 65199 69814
 51498 35581 39550 34398 46435 44343 65252 69905
 51646 35486 39583 34402 46536 44291 65650 69899
 51533 35291 39619 34334 46372 44377 65198 69955
 51830 35089 40243 34252 62326 44326 67254 69927
 51922 34938 39672 34335 46517 44391 68817 69962
 51689 36055 39719 34359 46558 45724 65424 69995
 51769 34542 39745 34437 46560 44321 65426 70045
 51849 37746 39725 34474 46421 44916 65422 70133
 51906 34061 40051 34473 46391 44328 65488 70111
 51817 33935 39848 34425 46411 44325 65549 70886
 52014 33954 39827 34436 46553 44353 65456 70328
 52151 34096 39846 35065 46460 44378 65605 70479
 52259 34217 39897 34630 46474 44385 65804 70469

 58

 52342 34371 39860 34713 46458 44371 65916 70522
 52400 34514 39889 34774 46446 44420 66235 70519
 52554 36335 39922 34814 46630 44462 66206 70490
 49132 34604 39974 34906 46852 44555 65919 70608
 49106 38095 40445 34991 46791 44606 65819 70621
 49147 36519 40454 35042 46882 44736 65221 70707
 49096 34768 40507 35062 47488 44786 66044 70623
 49100 34762 40383 35104 46795 44794 65679 70720
 49100 34819 40366 35112 46588 44834 66084 70669
 49073 34737 40361 35146 46824 44773 66148 70721
 49106 34717 40379 35123 46769 44773 66178 70655
 49079 34725 40348 35108 46727 44808 66060 70595
 49070 34730 40338 35111 46696 44664 65950 71381
 50315 34617 40930 35098 47016 44638 65955 70721
 50305 34541 40213 35066 46583 44775 65898 70648
 50186 34451 40197 34992 46580 44725 67338 70654
 50149 34381 40182 34911 46511 44718 66144 70688
 50196 34316 40235 34825 46482 44682 66199 70730
 49981 34208 40184 34677 46457 45284 66071 70749
 50068 34096 40171 34704 46616 44615 65847 70795
 49925 34151 40186 34727 46637 44636 65932 70811
 49841 34263 40239 34787 46915 44724 65994 70746
 49162 34381 40176 34799 46953 44698 66272 70804
 49997 34479 40160 34835 46655 44736 66316 70709
 49915 34567 39848 34845 46797 44804 66810 70780
 49908 34639 40016 34836 46768 44734 66340 70759
 49809 34666 40022 35482 46798 44680 66076 70753
 49773 34712 40025 34863 46842 44719 66140 70809
 49723 34768 40084 34817 47297 44666 66094 71320
 49685 34839 40004 34769 46798 44672 66512 70726
 49769 34836 40008 34830 46731 44666 66467 70503
 49704 34820 39761 34881 46658 44715 66343 70460
 49668 34815 39819 35128 46834 44631 66100 70511
 49660 34822 39761 34877 46780 44610 65818 70433
 49630 34765 39768 35079 46840 44636 65658 70045
 49625 34731 39914 34796 47056 44551 65910 70413
 50162 34677 39897 34754 47120 44798 66249 70533
 49613 34618 39929 34736 47013 44493 66444 70505
 49572 34501 39922 34668 47006 44250 66572 70543
 49612 34344 39914 34560 46923 44488 66347 70644
 49598 33929 39926 34233 47028 44520 66291 70730
 49629 35818 39950 34541 47076 44593 66090 70697
 49603 34548 40006 34658 47099 44583 66649 70755
 49857 34600 39937 34778 47106 44506 66273 70746
 49627 34667 39953 34817 46807 44611 66386 71401
 49689 34711 39799 34828 46776 44717 66458 70703
 49655 34741 39853 34843 46845 44989 66471 70829
 49603 34765 39807 34847 46640 44674 66281 70987
 49682 34781 39801 34853 46716 44639 65936 71065
 49701 34847 40022 34849 46749 44638 66051 70758
 49716 34765 40081 35585 46739 44649 66127 70707
 49776 34733 43410 34777 46826 44716 66258 70740
 49742 34671 43498 34805 46873 44791 66313 70720

 59

 49801 34695 40026 35439 46854 44727 66102 70731
Avg. 50739.54 35312.74 40133.92 35030.33 46852.9 44705.87 66042.06 70664.61
Frame
rate
(frames
per
second)

19.7085 28.31839161 24.91658 28.5466908 21.3434 22.3684272 15.14187 14.15135525

 60

15. Color Plates
The Color Plates are such that each page shows a simple surface in an arbitrary
orientation rendered by our algorithm. For each page, the top left image is rendered
by the conventional rendering algorithm, and the top right image shows the
wireframe. The bottom left one is rendered by our algorithm, and the bottom right
one shows the same thing but with a wireframe (not perturbed) superimposed on it.

	Sing-On Wu - master - cover.pdf
	Sing-On Wu - master - body.pdf

